Damage Stability of Cruise Ships

Henning Luhmann
12/04/2016

History of SOLAS requirements

- **SOLAS 74**
 - 2-compartment standard, margin line and floodable length
 - A265 equivalent probabilistic method
- **SOLAS 90**
 - 2-compartment standard, GZ requirements
- **SOLAS 92**
 - Probabilistic damage stability for cargo ships
- **SOLAS 2009**
 - Harmonized damage stability
 - Different required index for cargo and passenger ships
 - Same safety standard as SOLAS90
- **SOLAS2020**
 - New required index
Reasons for revision

- Concerns raised
 - Does SOLAS2009 have the same safety standard as SOLAS90?
 - How to deal with „water-on-deck“?
 - Do we need to raise safety after flooding?
- Research projects
 - EMSA1, Safedor, EMSA2, GOALDS, EMSA3
 - National projects in UK, Denmark, Sweden, Germany
- Accident COSTA CONCORDIA
- Inconsistencies in SOLAS2009

→ Decision to revise safety standard
→ Revision of SOLAS II-1

Reg.6 Required Index

- Basis for new R index based on EMSA3 results
- Various proposals have been discussed
- Difficult to agree for small ships due to wide variety of ship types and designs

![Graph showing Reg.6 Required Index with various data points and lines]

Henning Luhmann
EMSA / SeaEurope Workshop
12/04/2016
Reg.6 Required Index SCD3

- SDC3 decision → political compromise
 - Only parameter: \(N = \) number of persons

\[
R = \begin{cases}
0.000088 \times N + 0.7468 & \text{if } N \leq 1,000 \\
0.0368 \times \ln (N + 89.048) + 0.579 & \text{if } 1,000 < N \leq 6,000 \\
1 - \frac{1}{(c + 6.200)(4 + N + 20,000)} & \text{if } N > 6,000 \\
\end{cases}
\]

with \(c = 0.8 - (0.25 / 10,000) \times (10,000 - N) \)

Reg.6 Required Index

- Huge reduction of risk
 - 200 POB → -25% risk
 - 1000 POB → -40% risk
 - 7000 POB → -30% risk

- Previous political decision taken at MSC82 corrected
- Safety level of small ships significant increased
Reg.7-2 s-factor

- Special requirement for RoPax
 - Influence of “water-on-deck” accounted in new s-factor
 - GZ properties based on model tests with conventional ships
 - RoPax require higher GZ and Range to survive
 - GZ: 0.12m → 0.2m
 - Range: 16 deg → 20 deg

Other changes

- No WTD to be kept open during navigation
 - Significant design change for smaller ships
- Principle of Entry into Force changed
 - Keel laying is not relevant anymore
 - 3 dates principle as in MARPOL
 - Entry into force:
 - Contract on/after **1.1.2020**
 - If no contract: Keel laying on/after [1.1.2020]
 - Delivery not later than **1.1.2024**
Design Consequences RoPax

- Safety level most likely higher than 2003/25/EC
- Effect of new s-factor depending on ship design
 - For larger ships 2-6% loss of attained index
 - For smaller ships up to 10% loss on attained index
- For some designs and routes significant changes likely
 - In particular for ships with less 400 POB
 - Maybe no suitable LLH possible
 - Difficult to meet EEDI requirements
 - Modal change to road traffic or pure RoRo ships possible
- Many RoPax are engaged under domestic / EU trade
 - Development of new EC directive uncertain
- Difference between new ships and existing ships is increased, many old ships remain in service with old safety standard

Design Consequences Cruise ships

- Small cruise ships facing severe problems
 - One compartment standard not possible anymore for ships with <400 POB
 - New R level will be determining criterion
 - Higher freeboard and larger breadth required to meet R
 - no passenger below bulkhead deck suitable due to WTD restrictions

→ significant increase of ship size in particular for ships with less than 400 POB
Design Consequences Cruise ships

- Large cruise ships
 - approx 5-6% less capacity due to higher freeboard and breadth or changed subdivision
 \[\rightarrow\] increase of life-cycle costs and ticket prices
 - No significant influence on design concepts
- Cruise industry supports increase of safety level
- Application scheme may require significant design changes within ship series
 - Delivery 1.1.2024
 - Slots of European shipyards already booked until 2023
- New requirements may already been applied in new projects now

More Research Needed

- Safety level as indicated by SOLAS is significantly different to real case experiences and numerical simulations
 - e.g. Costa Concordia stayed afloat for many hours, even though she was built to SOLAS90 standard
- Survivability indicated by simulations is >95%
 \[\rightarrow\] joint industry project under preparation by CSSF
 eSAFE enhanced Survivability After Flooding Event

Henning Luhmann EMSA / SeaEurope Workshop 12/04/2016
Difference RoPax vs Cruise

- Damage Stability Regulations are largely based on model tests on RoPax
- Model tests for cruise are complicated and expensive, but:
- Huge difference between RoPax and cruise
 - Different risks and accident frequencies
 - Different sinking behavior (rapid capsize vs slow sinking) due to different internal subdivision
 - Research during the last 20 years focused on RoPax → applicability of s-factor for cruise ships remains questionable

- But:
 - **One level of R defined for all passenger ships**

Simplification of SOLAS

- A number of simplifications are included in SOLAS
 - Grounding not included in attained index
 - Distribution of draughts not realistic
 - Probability of sea state not considered
 - Aspects of evacuation mixed with survivability after flooding
 - Complex subdivision not covered by actual s-factor
 - Impact of various aspects to be quantified
 - Preparation to apply first-principle methods
 - Methodology to use numerical simulations

Sample ships

- Sample ships are As-built ships, no projects
 - Real design environment is used
 - Detailed design information available
 - Onboard data available
- Whole range of CLIA fleet to be considered
- Cover a wide range of size and operational area

Initial conditions and environment

- Collection of onboard data for 1 month of at least 10 different ships operated by CLIA members
- Weighing factors for DL, DP and DS to be checked
 - \[A = 0.2A_{DL} + 0.4A_{DP} + 0.4A_{DS} \]
- Calculation of A Index using real loading conditions, including tank fillings
 - Significant impact due to
 - Actual tank fillings
 - Behaviour of free surfaces
 - Actual GM
Effect of wave heights

- SOLAS s-factor is based on probability to survive flooding accident up to 4m wave height
- 4 m wave height based on old damage statistics (Stab15, HARDER)

- Probability of sea state not included
 - 90% are less than 3m, 60% are less than 2m
- Ship size may have significant influence
- More damage cases are survived in smaller waves

Effect of SOLAS parameters

- Influence of other parameters on attained index A to be verified
 - Immersion of escape routes and emergency stations
 - K-factor using 7 and 15 degrees as heel limits
 - External moments
 - Permeabilities may be wrong
- Calculation methods to be reviewed for handling of openings
 - Downflooding points not considered to stop GZ curve but calculation including progressive flooding through the opening
Non-zonal Approach for Collision

- Develop a non-zonal approach for collision damages
- Geometrical and probabilistic model of collision damage in accordance with SOLAS2009 to generate hull breaches
- Probabilistic description of lower limit of damage is missing in SOLAS2009 (presently worst case for s-factor): update needed
- Reference data from GOALDS
- Continue work from EMSA3

Combined Collision and Grounding

- Survivability assessment considering "all" types of damages
- Source of breach not relevant
 - Collision
 - Bottom grounding
 - Side grounding
- Determination of relative frequencies of different type of accidents (analysis of EMSA3 database)
- Consider risk models developed in EMSA3 as a basis for the combination
Derivation of s-factor

- Current s-factor based on RoPax modeltests
- Special behaviour of cruise ships to be considered
- Flow of water is randomly process
- Use the results from the simulations, confirmed by validation to propose a modified s-factor appropriate for the cruise ship design
- Based on work done in GOALDS
- No model tests, but numerical simulations

Numerical simulations

- Enhance numerical simulations as an alternative method for assessment of survivability
- Guideline to be developed to approve software and results
- Common guidance how to deal with probabilities, sea states, initial conditions
- Strategy to be developed to consider escape routes, external moments, max heel for LSA etc
- Comparison with updated static calculations
Conclusion

- New SOLAS2020 increase the safety level significantly
- Combination of new requirements may change some ship designs
- Some routes may suffer from modal change
- Gap between existing ships and new design will increase
 - Delay of introduction of improved safety level
 - Economic advantage of old ships
- Difference between RoPax and cruise ships to be further studied
- Quantification of real safety level for cruise ships needed